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Control Flow Integrity

Memory corruption 
vulnerabilities lead to 
Control Flow Hijacking
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Control Flow Integrity

CFIs prevent redirection of 
control flow to arbitrary 
locations
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Control Flow Integrity

- CFIs can protect:
- Forward edges (calls, jumps)
- Backward edges (return addresses)

- Statically determined set of valid targets for a call



7/27Andrea BiondoBack To The Epilogue: Evading Control Flow Guard via Unaligned Targets

Control Flow Integrity

- CFIs can protect:
- Forward edges (calls, jumps)
- Backward edges (return addresses)

- Statically determined set of valid targets for a call

     Undecidable!

- Resort to approximations of such sets:
- Coarse grained (single valid target set)
- Fine grained (valid target set per call site)
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Control Flow Guard - Overview

- Coarse Grained CFI mechanism

- Deployed in Microsoft Windows since Windows 8.1
(500 million machines worldwide)

- Compile time → valid target table for any indirect branch
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Control Flow Guard - Overview

- Coarse Grained CFI mechanism

- Deployed in Microsoft Windows since Windows 8.1
(500 million machines worldwide)

- Compile time → valid target table for any indirect branch

- Module loading → CFG bitmap for 16-byte aligned ranges
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Control Flow Guard - Overview

10: Aligned valid target
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Control Flow Guard - Overview

00: No valid target
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Control Flow Guard - Overview

11: Unaligned Valid Target
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Control Flow Guard - Runtime
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Bypassing CFG

- Multiple issues
- Unaligned targets
- No backwards-edge CFI
- Process-wide bitmap
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Bypassing CFG

- Multiple issues
- Unaligned targets
- No backwards-edge CFI
- Process-wide bitmap

- Functions are made of three parts
- Prologue (allocate stack, save registers)
- Body
- Epilogue (deallocate stack, restore registers, return)
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Unaligned Function Epilogues

Unaligned targets allow us to 
reach  epilogues

- Increment stack pointer



19/27Andrea BiondoBack To The Epilogue: Evading Control Flow Guard via Unaligned Targets

Bypassing CFG

Define PR gadgets

- Increment stack pointer by P 
bytes before returning

- Increment stack pointer by R 
bytes after returning
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Bypassing CFG

Hijack execution to a PR gadget to pivot the stack

Return address into attacker-controlled data
No backwards-edge CFI
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Bypassing CFG

Problem: on 64-bit, stack control 
is harder

- First 4 arguments passed in 
registers

- Register Parameter Area at 
stack top
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Bypassing CFG

Solution: spill argument registers 
to stack

- S gadgets
- Chain S gadget - PR gadget
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Impact Evaluation

- Systematically evaluated 
Windows’ system libraries

- Loaded by a large number 
of processes

PR S

32-bit 57 -

64-bit 22 985
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Impact Evaluation

- Systematically evaluated 
Windows’ system libraries

- Loaded by a large number 
of processes

- Found PR and S gadgets in 
high-risk libraries

- C runtime (32-bit)
- Media codecs
- Script engines

PR S

32-bit 57 -

64-bit 22 985
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Conclusions

- Coarse grained 16-byte approximation by CFG
- Well-performing practical design
- Very strong assumptions (→ alignment) do not hold

- BATE: High impact attack
- Widespread gadgets
- General, allows us to bypass CFG entirely
- Feasible in practice

- Disclosed to Microsoft
- Will be mitigated in RS4 (March/April)
- We have permission to present this work
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Thanks!
And align your code :-)
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Backup Slides
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Related Work

- Gadget Stitching (Davi et al., 2014)
- Chains of CFI-allowed gadgets

- Counterfeit Object-Oriented Programming (Schuster et al., 2015)
- Chains of CFI-allowed virtual methods

Both draw from restricted gadget sets

- Writing chains is harder
- BATE enables unrestricted code reuse
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More gadgets?!

- Systematically evaluated Microsoft Office 2016 Suite
- Exposed to attacks (e.g., macros on received documents)
- 64-bit version

- 123 PR gadgets

- Of which 101 are interesting: P
40

R
0
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Countermeasures

Aligning targets

- Simple
- May be difficult in corner cases (e.g., handwritten 

assembly)
- May impact certain optimizations

Making CFG more precise

- Virtual addressing space limitations
- CFG redesign?
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Proof-of-Concept

PoC exploit for 64-bit Edge on Windows 10

- Based on CVE-2017-720{0,1}
- Remote code execution from JavaScript
- MPEG-2 media codec by embedding a video


