
1/27Andrea BiondoBack To The Epilogue: Evading Control Flow Guard via Unaligned Targets

Back To The Epilogue
Evading Control Flow Guard via Unaligned Targets

Andrea Biondo, Mauro Conti, Daniele Lain

University of Padua

NDSS Symposium 2018
San Diego, CA

Tuesday, 20 February 2018

2/27Andrea BiondoBack To The Epilogue: Evading Control Flow Guard via Unaligned Targets

Outline

- Control Flow Integrity

- Microsoft Control Flow Guard

- BATE: Bypassing CFG

- Impact Evaluation

- Conclusions

3/27Andrea BiondoBack To The Epilogue: Evading Control Flow Guard via Unaligned Targets

Outline

- Control Flow Integrity

- Microsoft Control Flow Guard

- BATE: Bypassing CFG

- Impact Evaluation

- Conclusions

4/27Andrea BiondoBack To The Epilogue: Evading Control Flow Guard via Unaligned Targets

Control Flow Integrity

Memory corruption
vulnerabilities lead to
Control Flow Hijacking

5/27Andrea BiondoBack To The Epilogue: Evading Control Flow Guard via Unaligned Targets

Control Flow Integrity

CFIs prevent redirection of
control flow to arbitrary
locations

6/27Andrea BiondoBack To The Epilogue: Evading Control Flow Guard via Unaligned Targets

Control Flow Integrity

- CFIs can protect:
- Forward edges (calls, jumps)
- Backward edges (return addresses)

- Statically determined set of valid targets for a call

7/27Andrea BiondoBack To The Epilogue: Evading Control Flow Guard via Unaligned Targets

Control Flow Integrity

- CFIs can protect:
- Forward edges (calls, jumps)
- Backward edges (return addresses)

- Statically determined set of valid targets for a call

 Undecidable!

- Resort to approximations of such sets:
- Coarse grained (single valid target set)
- Fine grained (valid target set per call site)

8/27Andrea BiondoBack To The Epilogue: Evading Control Flow Guard via Unaligned Targets

Outline

- Control Flow Integrity

- Microsoft Control Flow Guard

- BATE: Bypassing CFG

- Impact Evaluation

- Conclusions

9/27Andrea BiondoBack To The Epilogue: Evading Control Flow Guard via Unaligned Targets

Control Flow Guard - Overview

- Coarse Grained CFI mechanism

- Deployed in Microsoft Windows since Windows 8.1
(500 million machines worldwide)

- Compile time → valid target table for any indirect branch

10/27Andrea BiondoBack To The Epilogue: Evading Control Flow Guard via Unaligned Targets

Control Flow Guard - Overview

- Coarse Grained CFI mechanism

- Deployed in Microsoft Windows since Windows 8.1
(500 million machines worldwide)

- Compile time → valid target table for any indirect branch

- Module loading → CFG bitmap for 16-byte aligned ranges

11/27Andrea BiondoBack To The Epilogue: Evading Control Flow Guard via Unaligned Targets

Control Flow Guard - Overview

10: Aligned valid target

12/27Andrea BiondoBack To The Epilogue: Evading Control Flow Guard via Unaligned Targets

Control Flow Guard - Overview

00: No valid target

13/27Andrea BiondoBack To The Epilogue: Evading Control Flow Guard via Unaligned Targets

Control Flow Guard - Overview

11: Unaligned Valid Target

14/27Andrea BiondoBack To The Epilogue: Evading Control Flow Guard via Unaligned Targets

Control Flow Guard - Runtime

15/27Andrea BiondoBack To The Epilogue: Evading Control Flow Guard via Unaligned Targets

Outline

- Control Flow Integrity

- Microsoft Control Flow Guard

- BATE: Bypassing CFG

- Impact Evaluation

- Conclusions

16/27Andrea BiondoBack To The Epilogue: Evading Control Flow Guard via Unaligned Targets

Bypassing CFG

- Multiple issues
- Unaligned targets
- No backwards-edge CFI
- Process-wide bitmap

17/27Andrea BiondoBack To The Epilogue: Evading Control Flow Guard via Unaligned Targets

Bypassing CFG

- Multiple issues
- Unaligned targets
- No backwards-edge CFI
- Process-wide bitmap

- Functions are made of three parts
- Prologue (allocate stack, save registers)
- Body
- Epilogue (deallocate stack, restore registers, return)

18/27Andrea BiondoBack To The Epilogue: Evading Control Flow Guard via Unaligned Targets

Unaligned Function Epilogues

Unaligned targets allow us to
reach epilogues

- Increment stack pointer

19/27Andrea BiondoBack To The Epilogue: Evading Control Flow Guard via Unaligned Targets

Bypassing CFG

Define PR gadgets

- Increment stack pointer by P
bytes before returning

- Increment stack pointer by R
bytes after returning

20/27Andrea BiondoBack To The Epilogue: Evading Control Flow Guard via Unaligned Targets

Bypassing CFG

Hijack execution to a PR gadget to pivot the stack

Return address into attacker-controlled data
No backwards-edge CFI

21/27Andrea BiondoBack To The Epilogue: Evading Control Flow Guard via Unaligned Targets

Bypassing CFG

Problem: on 64-bit, stack control
is harder

- First 4 arguments passed in
registers

- Register Parameter Area at
stack top

22/27Andrea BiondoBack To The Epilogue: Evading Control Flow Guard via Unaligned Targets

Bypassing CFG

Solution: spill argument registers
to stack

- S gadgets
- Chain S gadget - PR gadget

23/27Andrea BiondoBack To The Epilogue: Evading Control Flow Guard via Unaligned Targets

Outline

- Control Flow Integrity

- Microsoft Control Flow Guard

- BATE: Bypassing CFG

- Impact Evaluation

- Conclusions

24/27Andrea BiondoBack To The Epilogue: Evading Control Flow Guard via Unaligned Targets

Impact Evaluation

- Systematically evaluated
Windows’ system libraries

- Loaded by a large number
of processes

PR S

32-bit 57 -

64-bit 22 985

25/27Andrea BiondoBack To The Epilogue: Evading Control Flow Guard via Unaligned Targets

Impact Evaluation

- Systematically evaluated
Windows’ system libraries

- Loaded by a large number
of processes

- Found PR and S gadgets in
high-risk libraries

- C runtime (32-bit)
- Media codecs
- Script engines

PR S

32-bit 57 -

64-bit 22 985

26/27Andrea BiondoBack To The Epilogue: Evading Control Flow Guard via Unaligned Targets

Outline

- Control Flow Integrity

- Microsoft Control Flow Guard

- BATE: Bypassing CFG

- Impact Evaluation

- Conclusions

27/27Andrea BiondoBack To The Epilogue: Evading Control Flow Guard via Unaligned Targets

Conclusions

- Coarse grained 16-byte approximation by CFG
- Well-performing practical design
- Very strong assumptions (→ alignment) do not hold

- BATE: High impact attack
- Widespread gadgets
- General, allows us to bypass CFG entirely
- Feasible in practice

- Disclosed to Microsoft
- Will be mitigated in RS4 (March/April)
- We have permission to present this work

28/27Andrea BiondoBack To The Epilogue: Evading Control Flow Guard via Unaligned Targets

Thanks!
And align your code :-)

29/27Andrea BiondoBack To The Epilogue: Evading Control Flow Guard via Unaligned Targets

Backup Slides

30/27Andrea BiondoBack To The Epilogue: Evading Control Flow Guard via Unaligned Targets

Related Work

- Gadget Stitching (Davi et al., 2014)
- Chains of CFI-allowed gadgets

- Counterfeit Object-Oriented Programming (Schuster et al., 2015)
- Chains of CFI-allowed virtual methods

Both draw from restricted gadget sets

- Writing chains is harder
- BATE enables unrestricted code reuse

31/27Andrea BiondoBack To The Epilogue: Evading Control Flow Guard via Unaligned Targets

More gadgets?!

- Systematically evaluated Microsoft Office 2016 Suite
- Exposed to attacks (e.g., macros on received documents)
- 64-bit version

- 123 PR gadgets

- Of which 101 are interesting: P
40

R
0

32/27Andrea BiondoBack To The Epilogue: Evading Control Flow Guard via Unaligned Targets

Countermeasures

Aligning targets

- Simple
- May be difficult in corner cases (e.g., handwritten

assembly)
- May impact certain optimizations

Making CFG more precise

- Virtual addressing space limitations
- CFG redesign?

33/27Andrea BiondoBack To The Epilogue: Evading Control Flow Guard via Unaligned Targets

Proof-of-Concept

PoC exploit for 64-bit Edge on Windows 10

- Based on CVE-2017-720{0,1}
- Remote code execution from JavaScript
- MPEG-2 media codec by embedding a video

